Discussion 18 Worksheet Parametric surfaces and surface integrals

Date: 11/10/2021
MATH 53 Multivariable Calculus

1 Sphere Parametrization

Consider a sphere of radius R centered at the origin. We know that the sphere can be parametrized by

$$
\vec{r}(\phi, \theta)=\left(\begin{array}{c}
R \sin \phi \cos \theta \\
R \sin \phi \sin \theta \\
R \cos \phi
\end{array}\right),
$$

$0 \leq \phi \leq \pi, 0 \leq \theta \leq 2 \pi$.
(a) Compute the partial derivatives of $\vec{r}(\phi, \theta)$.
(b) Compute the normal vector $\vec{r}_{u} \times \vec{r}_{v}$ produced by this parametrization. Express it in terms of ϕ, θ and x, y, z.
(c) Use the magnitude of the normal vector (the "Jacobian") to compute the area of the unit sphere.
(d) Compute the surface integral of z^{2} over the sphere.

2 Surface Areas

Parametrize the following surfaces in an appropriate way (if they are not already parametrized) and compute their normal vectors and area.
(a) The portion of the elliptic paraboloid $z=x^{2}+y^{2}$ lying over the unit disk.
(b) The ellipsoid $2 z^{2}+x^{2}+y^{2}=1$. You don't need to evaluate the integral, but you can do it using

$$
\int \sqrt{1+x^{2}} d x=\frac{1}{2} x \sqrt{1+x^{2}}+\frac{1}{2} \ln \left(x+\sqrt{1+x^{2}}\right)+C .
$$

(c) The parametric surface $\vec{r}(u, v)=\left(u^{2}, u v, v^{2} / 2\right)$ where $0 \leq u \leq 1,0 \leq v \leq 2$.
(d) The part of the surface $z=x y$ that lies within the cylinder $x^{2}+y^{2}=1$.

3 Scalar Surface Integrals

Compute the surface integral

$$
\iint_{S} f(x, y, z) d S
$$

for the given function $f(x, y, z)$ over the surface S.
(a) $f(x, y, z)=x$ where S is the surface $y=x^{2}+4 z, 0 \leq x \leq 1,0 \leq z \leq 1$.
(b) $f(x, y, z)=\left(x^{2}+y^{2}\right) z$ and S the hemisphere $x^{2}+y^{2}+z^{2}=4, z \geq 0$.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

